
Welcome to Documentation
Welcome to CanSat NeXT documentation page! This site includes detailed technical

documentation of the CanSat NeXT hardware and software, as well as easy to approach

tutorials on setting up your CanSat NeXT and using the various hardware features on

the board.

If you are new here, head to Getting Started Page for information on how to start using

CanSat NeXT. You may also be interested in information of making the basic antenna

from the materials included with the kit. For that, head to article Communication and

Antennas.

While you are here, don't forget to also check our blog, where we show projects using

CanSat NeXT for purposes beyond CanSat. These are not CanSat projects, but still

showcase the possibilities of what can be done with CanSat NeXT.

Finally, if you are anything like me, you probably came to this page looking for the

pinout. More information about that in Pinout, but here is a quick reference:

https://www.cansat.fi/blog/
www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

License
This library and the CanSat NeXT board are developed by Samuli Nyman, in collaboration

with ESERO Finland and Arctic Astronautics Oy. The development is also supported by

the Finnish Physical Society. This software library is licensed under the MIT license.

Contribution
If you wish to contribute to the library or if you have feedback, please contact me

through samuli@kitsat.fi or start a GitHub issue. You are also welcome to create a pull

request.

mailto:samuli@kitsat.fi

Getting Started with
CanSat NeXT

Welcome to CanSat NeXT!
CanSat NeXT is a new variant of the CanSat kit, which integrates the necessary features

needed for a successful CanSat launch directly on one board, enabling you to get started

immediately with software development and your own missions. However, CanSat NeXT

doesn't forget your secondary mission, as you can connect any sensors or external

devices to the extension headers. You can think of CanSat NeXT like an Arduino, just

with sensors and other features already included straight out of the box.

Your Kit
If you don't yet have a CanSat NeXT kit, you can get one from our webshop:

https://holvi.com/shop/kitsat/section/cansat/. Alternatively, schools participating in

CanSat competitions and programs are usually eligible to get kits through ESERO

network.

https://holvi.com/shop/kitsat/section/cansat/

The kit includes one CanSat board, which is what you will mostly be working with.

Additionally, there is another board, which will be used as the groundstation radio - you

will use that to relay messages between a computer and the CanSat.

While CanSat NeXT already has a thermometer on board, the kit also includes a

thermistor, which can be soldered to the board to measure temperature outside the

board itself.

Finally, the kit includes two radio cables, which can be used to build basic antennas to

enable communication up to a kilometer away. Only one cable is needed, but it is nice to

have a backup. The heat-shrink tubing is included to add weather protection for the

antennas. For instructions on how to build the antenna, refer to article Communication

and Antennas.

Lessons
This page includes a growing number of simple lessons to get you smoothly started with

your CanSat NeXT kit. The first lesson is about setting up your computer to start CanSat

programming, and the following lessons present various hardware features of CanSat

NeXT. Additionally, we have a blog for showcasing various projects done with CanSat

NeXT, which might be interesting when planning your own CanSat mission.

Click here for the first lesson!.

Lesson 1: Hello World!
This first lesson shows gets you started with CanSat NeXT by showing how to write and

run your first program on the board.

After this lesson, you will have the necessary tools to start developing software for your

CanSat.

Installing the tooling
CanSat NeXT is recommended to be used with Arduino IDE, so let's begin by installing

that and the necesssary libraries and boards.

Install Arduino IDE

If you haven’t already, download and install the Arduino IDE from the official website

https://www.arduino.cc/en/software.

Add ESP32 support

CanSat NeXT is based on the ESP32 microcontroller, which is not included in the Arduino

IDE default installation. If you haven’t used ESP32 microcontrollers with Arduino before,

the support for the board needs to be installed first. It can be done in Arduino IDE from

Tools->board->Board Manager (or just press (Ctrl+Shift+B) anywhere). In the board

manager, search for ESP32, and install the esp32 by Espressif.

Install Cansat NeXT library

The CanSat NeXT library can be downloaded from the Arduino IDE's Library Manager

from Sketch > Include Libraries > Manage Libraries.

https://www.arduino.cc/en/software

Image source: Arduino Docs, https://docs.arduino.cc/software/ide-v1/tutorials/installing-

libraries

In the Library Manager search bar, type "CanSatNeXT" and choose "Install". If the IDE

asks if you want to also install the dependencies, click yes.s

Connecting to PC
After installing the CanSat NeXT software library, you can plug in the CanSat NeXT to

your computer. In case it is not detected, you may need to install the necessary drivers

first. The driver installation is done automatically in most cases, however, on some PCs it

needs to be done manually. Drivers can be found on the Silicon Labs website:

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers For additional help

https://docs.arduino.cc/software/ide-v1/tutorials/installing-libraries
https://docs.arduino.cc/software/ide-v1/tutorials/installing-libraries
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers

with setting up the ESP32, refer to the following tutorial: https://docs.espressif.com/

projects/esp-idf/en/latest/esp32/get-started/establish-serial-connection.html

Running your first program
Now, let's use the freshly installed libraries to start running some code on the CanSat

NeXT. As is tradition, let's begin by blinking the LED and writing "Hello World!" to the

computer.

Selecting the correct port

After plugging the CanSat NeXT into your computer (and turning the power on), you

need select the correct port. If you don't know which one is the correct one, simply

unplug the device and see which port disappears.

Arduino IDE now prompts your for the device type. Select ESP32 Dev Module.

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/establish-serial-connection.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/establish-serial-connection.html

Choosing an example

The CanSat NeXT library has several example codes showing how to use the various

features on the board. You can find these example sketches from File -> Examples ->

CanSat NeXT. Pick "Hello_world".

After opening the new sketch, you can upload it to the board by pressing the upload-

button.

After a while, the LED on the board should start blinking. Additionally, the device is

sending a message to the PC. You can see this by opening the serial monitor, and

choosing the baud rate 115200.

Try also to press the button on the board. It should reset the processor, or in other

words, restart the code from the beginning.

Hello World explained

Let's see what actually happens in this code by going through it line by line. First, the

code begins by including the CanSat library. This line should be at the beginning of

almost all of the programs written for CanSat NeXT, as it tells the compiler that we want

to use the features from the CanSat NeXT library.

Include CanSat NeXT

After this, the code jumps to the setup function. There we have two calls - first, serial is

the interface that we use to send messages to the PC via USB. The number inside the

function call, 115200, refers to the baud-rate, i.e. how many ones and zeros are sent

each second. The next call, CanSatInit() , is from the CanSat NeXT library and it

initiates all of the on-board sensors and other features. Similar to the #include

command, this is usually found in skethes for CanSat NeXT. Anything you'd like to be run

just once on startup should included in the setup-function.

#include "CanSatNeXT.h"

Setup

After the setup, the code starts repeating the loop function endlessly. First, the

program writes the output pin LED to be high, i.e. have a voltage of 3.3 volts. This turns

on the on-board LED. After 100 milliseconds, the voltage on that output pin is turned

back to zero. Now the program waits for 400 ms, and then sends a message to the PC.

After the message is sent, the loop function starts again from the beginning.

Loop

You can also try to change the delay values or the message to see what happens.

Congratulations for getting this far! Setting up the tooling can be tricky, but it should

get more fun from this point onwards. In the next lesson, we will start reading data from

the on-board sensors.

Click here for the second lesson!

void setup() {

// Start the serial line to print data to the terminal

Serial.begin(115200);

// Start all CanSatNeXT on-board systems.

CanSatInit();

}

void loop() {

// Let's blink the LED

digitalWrite(LED, HIGH);

delay(100);

digitalWrite(LED, LOW);

delay(400);

Serial.println("This is a message!");

}

Lesson 2: Feeling the
Pressure
In this second lesson, we will start using the sensors on the CanSat NeXT board. This

time, we will focus on measuring the surrounding atmospheric pressure. We will use the

on-board barometer LPS22HB to read the pressure, as well as to read the temperature

of the barometer itself.

Let's start from the barometer code in the library examples. In Arduino IDE, select File->

Examples->CanSat NeXT->Baro.

The beginning of the program looks quite familiar from the last lesson. Again, we start

by including the CanSat NeXT library, and setting up the serial connection as well as

initializing CanSat NeXT systems.

Setup

The function call CanSatInit() initializes all the sensors for us, including the

barometer. So, we can start using it in the loop function.

#include "CanSatNeXT.h"

void setup() {

// Initialize serial

Serial.begin(115200);

// Initialize the CanSatNeXT on-board systems

CanSatInit();

}

The below two lines are where the temperature and pressure are actually read. When

the functions readTemperature() and readPressure() are called, the processor

sends a command to the barometer, which measures the pressure or temperature, and

returns the result to the processor.

Reading to variables

In the example, the values are printed, and then this is followed by a delay of 1000 ms,

so that the loop will repeat roughly once a second.

Printing the variables

Using the data

We can also use the data in the code, rather than just to print it or save it. For example,

we could make a code that detects if the pressure drops by a certain amount, and for

instance turn the LED on. Or anything else you'd like to do. Let's try turning the on-

board LED on.

To implement this, we need to slighly modify the code in the example. First, let's start

float t = readTemperature();

float p = readPressure();

Serial.print("Pressure: ");

Serial.print(p);

Serial.print("hPa\ttemperature: ");

Serial.print(t);

Serial.println("*C\n");

delay(1000);

tracking the previous pressure value. To create global variables, i.e. ones that don't only

exist while we are executing a specific function, you can simply write them outside any

specific function. The variable previousPressure is updated on each cycle of the loop

function, right at the end. This way we keep track of the the old value, and can compare

it to the newer value.

We can use an if-statement to compare the old and new values. In the code below, the

idea is that if the previous pressure is 0.1 hPa lower than the new value, we will turn the

LED on, and otherwise the LED is kept off.

Reacting to pressure drops

float previousPressure = 1000;

void loop() {

// read temperature to a float - variable

float t = readTemperature();

// read pressure to a float

float p = readPressure();

// Print the pressure and temperature

Serial.print("Pressure: ");

Serial.print(p);

Serial.print("hPa\ttemperature: ");

Serial.print(t);

Serial.println("*C");

if(previousPressure - 0.1 > p)

{

digitalWrite(LED, HIGH);

}else{

digitalWrite(LED, LOW);

}

If you flash this modified loop to the CanSat NeXT, it should both print the variable

values like before, but now also look for the pressure drop. The atmospheric pressure

drops roughly 0.12 hPa / meter when going up, so if you try to rapidly lifting the CanSat

NeXT a meter higher, the LED should turn on for one loop cycle (1 second), and then

turn back off. It is probably best to disconnect the USB cable before trying this!

You can also try modifying the code. What happens if the delay is changed? What about

if the hysteresis of 0.1 hPa is changed, or even totally removed?

In the next lesson, we will get even more physical activity, as we try using the other

integrated sensor IC - the inertial measurement unit.

Click here for the next lesson!

Lesson 3: Sensing the Spin
CanSat NeXT has two sensor ICs on the CanSat NeXT board. One of them is the

barometer we used in the last lesson, and the other one is inertial measurement unit

LSM6DS3. The LSM6DS3 is a 6-axis IMU, which means that it is able to perform 6

different measurements. In this case, it is linear acceleration on three axis (x, y, z) and

angular velocity on three axis.

In this lesson, we will look at the IMU example in the library, and also use the IMU to do a

small experiment.

Library Example
Let's start by looking at how the library example works. Load it from File -> Examples ->

CanSat NeXT -> IMU.

The initial setup is again the same - include the library, initialize serial and CanSat. So,

let's focus on the loop. However, the loop also looks really familiar! We read the values

just like in the last lesson, only this time there are many more of them.

Reading IMU values

float ax = readAccelX();

float ay = readAccelY();

float az = readAccelZ();

float gx = readGyroX();

float gy = readGyroY();

float gz = readGyroZ();

NOTE

Each axis is actually read some hundreds of microseconds apart. If you need them

to be updated simultaneously, check out the functions readAcceleration and

readGyro.

After reading the values, we can print them as usually. This could be done using

Serial.print and println just like in the last lesson, but this example shows an alternative

way to print the data, with much less manual writing.

First, a buffer of 128 chars is created. Then this is first initialized so that each value is 0,

using memset. After this, the values are written to the buffer using snprintf() , which

is a function that can be used to write strings with a specified format. Finally, this is just

printed with Serial.println() .

Fancy Printing

If the above feels confusing, you can just use the more familiar style using print and

println. However, this gets a bit annoying when there are many values to print.

Regular Printing

char report[128];

memset(report, 0, sizeof(report));

snprintf(report, sizeof(report), "A: %4.2f %4.2f %4.2f G: %4.2f

%4.2f %4.2f",

ax, ay, az, gx, gy, gz);

Serial.println(report);

Serial.print("Ax:");

Serial.println(ay);

// etc

Finally, there is again a short delay before starting the loop again. This is mainly there to

ensure that the output is readable - without a delay the numbers would be changing so

fast that it is hard to read them.

The acceleration is read in Gs, or multiples of 9.81 m/s2. The angular velocity is in units

of mrad/s.

EXERCISE

Try to identify the axis based on the readings!

Free Fall detection
As an exercise, let's try to detect if the device is in free fall. The idea is that we would

throw the board in the air, CanSat NeXT would detect the free fall and turn the LED on

for couple of seconds after detecting a free fall event, so that we can tell that our check

had triggered even after again catching it.

We can keep the setup just like it was, and just focus on the loop. Let's clear the old loop

function, and start fresh. Just for fun, let's read the data using the alternative method.

Read Acceleration

Let's define free fall as an event when the total acceleration is below a treshold value.

We can calculate the total acceleration from the individual axis as

a = ax
2 + ay

2 + az
2

float ax, ay, az;

readAcceleration(ax, ay, az);

Which would look in code something like this.

Calculating total acceleration

And while this would work, we should note that calculating the square root is really slow

computationally, so we should avoid doing it if possible. After all, we could just calculate

a2 = ax
2 + ay

2 + az
2

and compare this to a predefined treshold.

Calculating total acceleration squared

Now that we have a value, let's start controlling the LED. We could have the LED on

always when the total acceleration is below a treshold, however reading it would be

easier if the LED stayed on for a while after detection. One way to do this is to make

another variable, let's call it LEDOnTill, where we simply write the time to where we

want to keep the LED on.

Timer variable

Now we can update the timer if we detect a free fall event. Let's use treshold of 0.1 for

now. Arduino provides a function called millis() , which returns the time since the

program started in milliseconds.

float totalSquared = ax*ax+ay*ay+az*az;

float acceleration = Math.sqrt(totalSquared);

float totalSquared = ax*ax+ay*ay+az*az;

unsigned long LEDOnTill = 0;

Updating the timer

Finally, we can just check if the current time is more or less than the specified

LEDOnTill , and control the LED based on that. Here is what the new loop function

looks like:

Free fall detecting loop function

if(totalSquared < 0.1)

{

LEDOnTill = millis() + 2000;

}

unsigned long LEDOnTill = 0;

void loop() {

// Read Acceleration

float ax, ay, az;

readAcceleration(ax, ay, az);

// Calculate total acceleration (squared)

float totalSquared = ax*ax+ay*ay+az*az;

// Update the timer if we detect a fall

if(totalSquared < 0.1)

{

LEDOnTill = millis() + 2000;

}

// Control the LED based on the timer

if(LEDOnTill >= millis())

{

digitalWrite(LED, HIGH);

}else{

Trying out this program, you can see how fast it now reacts since we don't have a delay

in the loop. The LED turns on immediately after leaving the hand when being thrown.

EXERCISES

1. Try reintroducing the delay in the loop function. What happens?

2. Currently we don't have any printing in the loop. If you just add a print

statement to the loop, the output will be really difficult to read and the

printing will slow down the loop cycle time significantly. Can you come up with

way to only print once a second, even if the loop is running continuously? Tip:

look at how the LED timer was implemented

3. Create your own experiment, using either the acceleration or spinning to

detect some type of event.

In the next lesson, we will leave the digital domain and try using a different style of

sensor - an analogue light meter.

Click here for the next lesson!

Lesson 4: Resistance isn't
Futile
So far we have focused on using digital sensor devices to get values directly in SI units.

However, electrical devices make the measurement usually in an indirect way, and the

conversion to the desired units is then done afterwards. This was done previously by the

sensor devices themselves (and by the CanSat NeXT library), but many sensors we use

are much more simple. One type of analogue sensors is resistive sensors, where the

resistance of a sensor element changes depending on some phenomena. Resistive

sensors exist for a multitude of quantities - including force, temperature, light intensity,

chemical concentrations, pH, and many others.

In this lesson, we will be using the light-dependant resistor (LDR) on the CanSat NeXT

board to measure surrounding light intensity. While the themistor is used in a very

similar way, that will be the focus of a future lesson. The same skills apply directly to

using the LDR and thermistor, as well as many other resistive sensors.

Physics of Resistive Sensors
Instead of jumping directly to the software, let's take a step back and discuss how

reading a resistive sensor generally works. Consider the schematic below. The voltage at

LDR_EN is 3.3 volts (operating voltage of the processor), and we have two resistors

connected in series on its path. One of these is the LDR (R402), while the other one is a

reference resistor (R402). The resistance of the reference resistor is 10 kilo-ohms, while

the resistance of the LDR varies between 5-300 kilo-ohms depending on the light

conditions.

Since the resistors are connected in series, the total resistance is

and the current through the resistors is

R = R401 + RLDR,

where VOP is the operational voltage of the MCU. Remember that the current has to be

the same through both of the of the resistors. Therefore we can calculate the voltage

drop over the LDR as

And this voltage drop is the voltage of the LDR that we can measure with an analog-to-

digital converter. Usually this voltage can be directly correlated or calibrated to

correspond to measured values, like for example from voltage to temperature or

brightness. However, sometimes it is desirable to first calculate the measured

resistance. If necessary, it can be calculated as:

Reading the LDR in Practice
Reading the LDR or other resistive sensors is very easy, as we just need to query the

analog-to-digital converter for the voltage. Let's start this time a new Arduino Sketch

from scratch. File -> New Sketch.

First, let's start the sketch like before by including the library. This is done at the

beginning of the sketch. In the setup, start the serial and initialize CanSat, just like

before.

Basic Setup

ILDR =
R

VOP ,

VLDR = RLDR ∗ ILDR = VOP
R401 + RLDR

RLDR .

RLDR =
ILDR

VLDR =
VOP

VLDR (R401 + RLDR) = R401
1 −

VOP

VLDR

VOP

VLDR

#include "CanSatNeXT.h"

A basic loop to read the LDR isn't much more complicated. The resistors R401 and R402

are already on the board, and we just need to read the voltage from their common node.

Let's read the ADC value and print it.

Basic LDR loop

With this program, the values clearly react to lighting conditions. We get lower values

when the LDR is exposed to light, and higher values when it is darker. However, the

values are in hundreds and thousands, not in an expected voltage range. This is because

we are now reading the direct output of the ADC. Each bit represent a voltage

comparison ladder being one or zero depending on the voltage. The values are now

0-4095 (2^12-1) depending on the input voltage. Again, this direct measurement is

probably what you want to use if you are doing something like detecting pulses with the

LDR, but quite often regular volts are nice to work with. While calculating the voltage

yourself is a good exercise, the library includes a conversion function that also considers

the non-linearity of the ADC, meaning that the output is more accurate than from a

simple linear conversion.

Reading the LDR voltage

void loop() {

int value = analogRead(LDR);

Serial.print("LDR value:");

Serial.println(value);

delay(200);

}

void loop() {

float LDR_voltage = analogReadVoltage(LDR);

Serial.print("LDR value:");

Serial.println(LDR_voltage);

delay(200);

https://www.cansat.fi/blog/first-project#pulse-detection
https://www.cansat.fi/blog/first-project#pulse-detection

NOTE

This code is compatible with the serial plotter in Arduino Code. Try it out!

EXERCISE

It could be useful to detect the CanSat having been deployed from the rocket, so

that for instance the parachute could be deployed at the right time. Can you write

a program that detects a simulated deployment? Simulate the launch by first

covering the LDR (rocket integration) and then uncovering it (deployment). The

program could output the deployment to the terminal, or blink an LED to show that

the deployment happened.

The next lesson is about using the SD-card to store measurements, settings, and more!

Click here for the next lesson!

Lesson 5: Saving Bits &
Bytes
Sometimes getting the data directly to a PC isn't feasible, like when we are throwing the

device around, launching it with a rocket, or taking measurements in hard-to-reach

places. In such cases, it is best to save the measured data to an SD card for further

processing later. Additionally, the SD card can also be used to store settings - for

example we could have some type of treshold setting or address settings stored on the

SD card.

SD card in CanSat NeXT library
CanSat NeXT library supports a large range of SD card operations. It can be used to save

and read files, but also to create directories and new files, move them around or even

delete them. All of these could be useful in various circumstances, but let's keep the

focus here on the two basic things - reading a file, and writing data to a file.

NOTE

If you want full control of the filesystem, you can find the commands from the

Library Specification or from the library example "SD_advanced".

As an exercise, let's modify the code from the last lesson so that instead of writing the

LDR measurements to the serial, we will save them on the SD card.

First, let's define the name of the file we will use. Let's add it before the setup function

as a global variable.

Modified Setup

Now that we have a filepath, we can write to the SD card. We need just two lines to do it.

The best command to use for saving measurement data is appendFile() , which just

takes the filepath, and writes the new data at the end of the file. If the file doesn't exist,

it creates it. This makes using the command very easy (and safe). We can just directly

add the data to it, and then follow that with a line change so that the data is easier to

read. And that's it! Now we are storing the measurements.

Saving LDR data to the SD card

By default, the appendFile() command stores floating point numbers with two values

after the decimal point. For more specific functionality, you could first create a string in

the sketch, and use command appendFile() to store that string to the SD card. So for

#include "CanSatNeXT.h"

const String filepath = "/LDR_data.csv";

void setup() {

Serial.begin(115200);

CanSatInit();

}

void loop() {

float LDR_voltage = analogReadVoltage(LDR);

Serial.print("LDR value:");

Serial.println(LDR_voltage);

appendFile(filepath, LDR_voltage);

appendFile(filepath, "\n");

delay(200);

}

example:

Saving LDR data to the SD card

Here the final string is made first, with the String(LDR_voltage, 6) specifying that

we want 6 decimals after the point. We can use the same string for printing and storing

the data. (As well as transmitting via radio)

Reading Data
It is quite often useful to store something on the SD card for future use in the program

as well. These could be for example settings about the current state of the device, so

that if the program resets, we can load the current status again from the SD card

instead of starting from default values.

To demonstrate this, add on PC a new file to the SD card called "delay_time", and write a

number into the file, like 200. Let's try to replace the statically set delay time in our

program with a setting read from a file.

Let's try to read the setting file in the setup. First, let's introduce a new global variable. I

gave it a default value of 1000, so that if we don't manage to modify the delay time, this

is now the default setting.

void loop() {

float LDR_voltage = analogReadVoltage(LDR);

String formattedString = String(LDR_voltage, 6) + "\n";

Serial.print(formattedString);

appendFile(filepath, formattedString);

delay(200);

}

In the setup, we should first check if the file even exists. This can be done using

command fileExists() . If it doesn't let's just use the default value. After this, the

data can be read using readFile() . However, we should note that it is a string - not an

integer like we need it to be. So, let's convert it using Arduino command toInt() .

Finally, we check if the conversion was succesful. If it wasn't, the value will be zero, in

which case we will just keep using the default value.

Reading a setting in the setup

Finally, don't forget to change the delay in the loop to use the new variable.

Dynamically set delay value

#include "CanSatNeXT.h"

const String filepath = "/LDR_data.csv";

const String settingFile = "/delay_time";

int delayTime = 1000;

void setup() {

Serial.begin(115200);

CanSatInit();

if(fileExists(settingFile))

{

String contents = readFile(settingFile);

int value = contents.toInt();

if(value != 0){

delayTime = value;

}

}

}

You can now try changing the value on the SD card, or even removing the SD card, in

which case it should now use the default value for the delay length.

NOTE

To rewrite the setting in your program, you can use command writeFile. It works

just like appendFile, but overwrites any existing data.

EXERCISE

Continue from your solution to the exercise in lesson 4, so that the state is

maintained even if the device is reset. I.e. store the current state on the SD card

and read it in the setup. This would simulate a scenario where your CanSat

suddenly resets in flight or before the flight, and with this program you would still

get a succesful flight.

In the next lesson, we will look at using radio to transmit data between processors. You

should have some type of antenna in your CanSat NeXT and the groundstation before

starting those exercises. If you haven't already, take a look at the tutorial for building a

basic antenna: Building an antenna.

Click here for the next lesson!

void loop() {

float LDR_voltage = analogReadVoltage(LDR);

String formattedString = String(LDR_voltage, 6) + "\n";

Serial.print(formattedString);

appendFile(filepath, formattedString);

delay(delayTime);

}

Lesson 6: Phoning Home
Now we have taken measurements and also saved them on an SD-card. The next logical

step is to transmit them wirelessly to the ground, which enables completely new world

in terms of measurements and experiments we can perform. For example, trying out the

zero-g flight with IMU would have been quite a bit more interesting (and easy to

calibrate), if we could have seen the data in real time. Let's take a look at how we can do

that!

In this lesson, we will send measurements from CanSat NeXT to the groundstation

receiver. Later on, we will also take a look at commanding the CanSat with messaged

sent by the groundstation.

Antennas
Before starting this lesson, please make sure you have some type of antenna connected

to the CanSat NeXT board and the groundstation.

NOTE

You should never try transmitting anything without an antenna. Not only will it

probably not work, there is a possibility that the reflected power will damage the

transmitter.

Since we are using 2.4 GHz band, which is shared by systems like Wi-Fi, Bluetooth, ISM,

drones etc, there are a lot of commercial antennas available. Most Wi-Fi antennas

actually work really well with CanSat NeXT, but you will often need an adapter to

connect them to the CanSat NeXT board. We have also tested some adapter models,

which are available in the webstore.

More information about antennas can be found in the hardware documentation:

Communication and Antennas. This article also has instructions on building your own

antenna from the materials in the CanSat NeXT kit.

Sending Data
With the discussion about antennas out of the way, let's start sending some bits. We will

start again by looking at the setup, which has actually a key difference this time - we've

added a number as an argument to the CanSatInit() command.

Setup for transmission

Passing a number value to CanSatInit() tells the CanSat NeXT that we want to now

use the radio. The number indicates the value of the last byte of the MAC address. You

can think of it as a key to your specific network - you can only communicate to CanSats

that share the same key. This number should be shared between your CanSat NeXT and

your groundstation. You can pick your favorite number between 0 and 255. I picked 28,

since it is perfect.

With the radio initialized, transmitting the data is really simple. It actually operates just

like the appendFile() that we used in the last lesson - you can add any value and it will

transmit it in a default format, or you can use a formatted string and send that instead.

#include "CanSatNeXT.h"

void setup() {

Serial.begin(115200);

CanSatInit(28);

}

https://en.wikipedia.org/wiki/Perfect_number

Transmitting the data

With this simple code, we are now transmitting the LDR measurement almost 10 times

per second. Next let's take a look at how to receive it.

NOTE

Those familiar to low-level programming might feel more comfortable sending the

data in binary form. Don't worry, we've got you covered. The binary commands are

listed in the Library Specification.

Receiving Data
This code should now be programmed to another ESP32. Usually it is the second

controller board included in the kit, however pretty much any other ESP32 will work as

well - including another CanSat NeXT.

The setup code is exactly the same as before. Just remember to change the radio key to

your favorite number.

Setup for reception

void loop() {

float LDR_voltage = analogReadVoltage(LDR);

sendData(LDR_voltage);

delay(100);

}

#include "CanSatNeXT.h"

However, after that things get a bit different. We make a completely empty loop

function! This is because we have actually nothing to do in the loop, but instead the

receiving is done through callbacks.

Setting up a callback

Where as the function setup() runs just once at the start and loop() runs

continuously, the function onDataReceived() runs only when the radio has received

new data. This way, we can handle the data in the callback function. In this example, we

just print it, but we could have also modified it however we wanted.

Note that the loop() function doesn't have to be empty, you can actually use it for

whatever you want with one caviat - delays should be avoided, as the

onDataReceived() function will also not run until the delay is over.

If you now have both programs running on different boards at the same time, there

should be quite a lot of measurements being sent wirelessly to your PC.

NOTE

For binary oriented folks - you can use the callback function onBinaryDataReceived.

void loop() {

// We have nothing to do in the loop.

}

// This is a callback function. It is run every time the radio

receives data.

void onDataReceived(String data)

{

Serial.println(data);

}

Real time Zero-G
Just for fun, let's repeat the zero-g experiment but with radios. The receiver code can

stay the same, as actually does the setup in the CanSat code.

As a reminder, we made a program in the IMU lesson that detected free-fall and turned

an a LED in this scenario. Here is the old code:

Free fall detecting loop function

unsigned long LEDOnTill = 0;

void loop() {

// Read Acceleration

float ax, ay, az;

readAcceleration(ax, ay, az);

// Calculate total acceleration (squared)

float totalSquared = ax*ax+ay*ay+az*az;

// Update the timer if we detect a fall

if(totalSquared < 0.1)

{

LEDOnTill = millis() + 2000;

}

// Control the LED based on the timer

if(LEDOnTill >= millis())

{

digitalWrite(LED, HIGH);

}else{

digitalWrite(LED, LOW);

}

It is tempting to just add the sendData() directly to the old example, however we

need to consider the timing. We don't usually want to send messages more than ~20

times per second, but on the other hand we want to the loop to be running continuously

so that the LED still turns on.

We need to add another timer - this time to send data every 50 milliseconds. The timer is

done by comparing the current time to the current time to the last time when data was

sent. The last time is then updated each time data is sent. Take also a look at how the

string is made here. It could also be transmitted in parts, but this way it is received as a

single message, instead of multiple messages.

Free fall detection + data transmission

unsigned long LEDOnTill = 0;

unsigned long lastSendTime = 0;

const unsigned long sendDataInterval = 50;

void loop() {

// Read Acceleration

float ax, ay, az;

readAcceleration(ax, ay, az);

// Calculate total acceleration (squared)

float totalSquared = ax*ax+ay*ay+az*az;

// Update the timer if we detect a fall

if(totalSquared < 0.1)

{

LEDOnTill = millis() + 2000;

}

The data format here is actually compatible again with the serial plotter - looking at that

data makes it quite clear why we were able to detect the free fall earlier so cleanly - the

values really do drop to zero as soon as the device is dropped or thrown.

This concludes the lessons for now. We will add more soon, but in the meanwhile you

can find more information about using CanSat NeXT from the other Arduino examples,

our blog and the software and hardware documentation. I would love to hear your

feedback and ideas regarding CanSat NeXT and these materials, so don't hesitate to

contact me at samuli@kitsat.fi.

https://www.cansat.fi/blog/
mailto:samuli@kitsat.fi

CanSat NeXT Software
The recommended way to use CanSat NeXT is with the CanSat NeXT Arduino library,

available from the Arduino library manager and Github. Prior to installing the CanSat

NeXT library, you have to install Arduino IDE and ESP32 board support.

Getting started

Install Arduino IDE

If you haven’t already, download and install the Arduino IDE from the official website

https://www.arduino.cc/en/software.

Add ESP32 support

CanSat NeXT is based on the ESP32 microcontroller, which is not included in the Arduino

IDE default installation. If you haven’t used ESP32 microcontrollers with Arduino before,

the support for the board needs to be installed first. It can be done in Arduino IDE from

Tools->board->Board Manager (or just press (Ctrl+Shift+B) anywhere). In the board

manager, search for ESP32, and install the esp32 by Espressif.

Install Cansat NeXT library

The CanSat NeXT library can be downloaded from the Arduino IDE's Library Manager

from Sketch > Include Libraries > Manage Libraries.

https://www.arduino.cc/en/software

Image source: Arduino Docs, https://docs.arduino.cc/software/ide-v1/tutorials/installing-

libraries

In the Library Manager search bar, type "CanSatNeXT" and choose "Install". If the IDE

asks if you want to also install the dependencies, click yes.

Manual installation
The library is also hosted on its own GitHub repository and can be cloned or downloaded

and installed from source.

In this case, you need to extract the library and move it in to the directory where

Arduino IDE can find it. You can find the exact location in File > Preferences > Sketchbook.

https://docs.arduino.cc/software/ide-v1/tutorials/installing-libraries
https://docs.arduino.cc/software/ide-v1/tutorials/installing-libraries
https://github.com/netnspace/CanSatNeXT_library

Image source: Arduino Docs, https://docs.arduino.cc/software/ide-v1/tutorials/installing-

libraries

Connecting to PC
After installing the CanSat NeXT software library, you can plug in the CanSat NeXT to

your computer. In case it is not detected, you may need to install the necessary drivers

first. The driver installation is done automatically in most cases, however, on some PCs it

needs to be done manually. Drivers can be found on the Silicon Labs website:

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers For additional help

with setting up the ESP32, refer to the following tutorial: https://docs.espressif.com/

projects/esp-idf/en/latest/esp32/get-started/establish-serial-connection.html

https://docs.arduino.cc/software/ide-v1/tutorials/installing-libraries
https://docs.arduino.cc/software/ide-v1/tutorials/installing-libraries
https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/establish-serial-connection.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/establish-serial-connection.html

You are ready to go!
You can now find CanSatNeXT examples from the Arduino IDE from File->Examples-

>CanSatNeXT.

Library specification
Functions
You can use all regular Arduino functionalities with CanSat NeXT, as well as any Arduino

libraries. Arduino functions can be found here: https://www.arduino.cc/reference/en/.

CanSat NeXT library adds several easy to use functions for using the different on-board

resources, such as sensors, radio and the SD-card. The library comes with a set of

example sketches that show how to use these functionalities. The list below also shows

all available functions.

System Initialization Functions

CanSatInit

Function uint8_t CanSatInit(uint8_t macAddress[6])

Return

Type
uint8_t

Return

Value

Returns 0 if initialization was successful, or non-zero if there was an

error.

Parameters

uint8_t macAddress[6]

https://www.arduino.cc/reference/en/

Function uint8_t CanSatInit(uint8_t macAddress[6])

6-byte MAC address shared by the satellite and the ground station.

This is an optional parameter - when it is not provided, the radio is

not initialized. Used in example sketch: All

Description

This command is found in the setup() of almost all CanSat NeXT

scripts. It is used to initialize the CanSatNeXT hardware, including

the sensors and the SD-card. Additionally, if the macAddress is

provided, it starts the radio and starts to listen for incoming

messages. The MAC address should be shared by the ground station

and the satellite. The MAC address can be chosen freely, but there

are some non-valid addresses such as all bytes being 0x00 , 0x01 ,

and 0xFF . If the init function is called with a non-valid address, it will

report the problem to the Serial.

CanSatInit (simplified MAC-address specification)

Function uint8_t CanSatInit(uint8_t macAddress)

Return

Type
uint8_t

Return

Value

Returns 0 if initialization was successful, or non-zero if there was an

error.

Parameters

Function uint8_t CanSatInit(uint8_t macAddress)

uint8_t macAddress

Last byte of the MAC-address, used to differentiate between

different CanSat-GS pairs.

Description

This is a simplified version of the CanSatInit with MAC address, which

sets the other bytes automatically to a known safe value. This

enables the users to differentiate their Transmitter-Receiver pairs

with just one value, which can be 0-255.

GroundStationInit

Function uint8_t GroundStationInit(uint8_t macAddress[6])

Return

Type
uint8_t

Return

Value

Returns 0 if initialization was successful, or non-zero if there was an

error.

Parameters

uint8_t macAddress[6]

6-byte MAC address shared by the satellite and the ground station.

Used in Groundstation receive

Function uint8_t GroundStationInit(uint8_t macAddress[6])

example

sketch

Description

This is a close relative of the CanSatInit function, but it always

requires the MAC address. This function only initializes the radio, not

other systems. The ground station can be any ESP32 board, including

any devboard or even another CanSat NeXT board.

GroundStationInit (simplified MAC-address
specification)

Function uint8_t GroundStationInit(uint8_t macAddress)

Return

Type
uint8_t

Return

Value

Returns 0 if initialization was successful, or non-zero if there was an

error.

Parameters

uint8_t macAddress

Last byte of the MAC-address, used to differentiate between

different CanSat-GS pairs.

Description This is a simplified version of the GroundStationInit with MAC

Function uint8_t GroundStationInit(uint8_t macAddress)

address, which sets the other bytes automatically to a known safe

value. This enables the users to differentiate their Transmitter-

Receiver pairs with just one value, which can be 0-255.

IMU Functions

readAcceleration

Function uint8_t readAcceleration(float &x, float &y, float &z)

Return

Type
uint8_t

Return

Value
Returns 0 if measurement was successful.

Parameters

float &x, float &y, float &z

float &x : Address of a float variable where the x-axis data will be

stored.

Used in

example

sketch

IMU

Function uint8_t readAcceleration(float &x, float &y, float &z)

Description

This function can be used to read acceleration from the on-board

IMU. The parameters are addresses to float variables for each axis.

The example IMU shows how to use this function to read the

acceleration. The acceleration is returned in units of G (9.81 m/s).

readAccelX

Function float readAccelX()

Return

Type
float

Return

Value
Returns linear acceleration on X-axis in units of G.

Used in

example

sketch

IMU

Description

This function can be used to read acceleration from the on-board

IMU on a specific axis. The example IMU shows how to use this

function to read the acceleration. The acceleration is returned in

units of G (9.81 m/s).

readAccelY

Function float readAccelY()

Return

Type
float

Return

Value
Returns linear acceleration on Y-axis in units of G.

Used in

example

sketch

IMU

Description

This function can be used to read acceleration from the on-board

IMU on a specific axis. The example IMU shows how to use this

function to read the acceleration. The acceleration is returned in

units of G (9.81 m/s).

readAccelZ

Function float readAccelZ()

Return

Type
float

Return

Value
Returns linear acceleration on Z-axis in units of G.

Function float readAccelZ()

Used in

example

sketch

IMU

Description

This function can be used to read acceleration from the on-board

IMU on a specific axis. The example IMU shows how to use this

function to read the acceleration. The acceleration is returned in

units of G (9.81 m/s).

readGyro

Function uint8_t readGyro(float &x, float &y, float &z)

Return

Type
uint8_t

Return

Value
Returns 0 if measurement was successful.

Parameters

float &x, float &y, float &z

float &x : Address of a float variable where the x-axis data will be

stored.

Used in IMU

Function uint8_t readGyro(float &x, float &y, float &z)

example

sketch

Description

This function can be used to read angular velocity from the on-board

IMU. The parameters are addresses to float variables for each axis.

The example IMU shows how to use this function to read the angular

velocity. The angular velocity is returned in units mrad/s.

readGyroX

Function float readGyroX()

Return

Type
float

Return

Value
Returns angular velocity on X-axis in units of mrad/s.

Used in

example

sketch

IMU

Description

This function can be used to read angular velocity from the on-board

IMU on a specific axis. The parameters are addresses to float

variables for each axis. The angular velocity is returned in units mrad/

s.

readGyroY

Function float readGyroY()

Return

Type
float

Return

Value
Returns angular velocity on Y-axis in units of mrad/s.

Used in

example

sketch

IMU

Description

This function can be used to read angular velocity from the on-board

IMU on a specific axis. The parameters are addresses to float

variables for each axis. The angular velocity is returned in units mrad/

s.

readGyroZ

Function float readGyroZ()

Return

Type
float

Return

Value
Returns angular velocity on Z-axis in units of mrad/s.

Function float readGyroZ()

Used in

example

sketch

IMU

Description

This function can be used to read angular velocity from the on-board

IMU on a specific axis. The parameters are addresses to float

variables for each axis. The angular velocity is returned in units mrad/

s.

Barometer Functions

readPressure

Function float readPressure()

Return Type float

Return Value Pressure in mbar

Parameters None

Used in

example

sketch

Baro

Description This function returns pressure as reported by the on-board

Function float readPressure()

barometer. The pressure is in units of millibar.

readTemperature

Function float readTemperature()

Return

Type
float

Return

Value
Temperature in Celsius

Parameters None

Used in

example

sketch

Baro

Description

This function returns temperature as reported by the on-board

barometer. The unit of the reading is Celsius. Note that this is the

internal temperature measured by the barometer, so it might not

reflect the external temperature.

SD Card / File System Functions

SDCardPresent

Function bool SDCardPresent()

Return

Type
bool

Return

Value
Returns true if it detects an SD-card, false if not.

Parameters None

Used in

example

sketch

SD_advanced

Description

This function can be used to check if the SD-card is mechanically

present. The SD-card connector has a mechanical switch, which is

read when this function is called. Returns true or false depending on

whether the SD-card is detected.

appendFile

Function uint8_t appendFile(String filename, T data)

Return Type uint8_t

Return Value Returns 0 if write was successful.

Parameters

String filename : Address of the file to be appended. If the

file doesn’t exist, it is created.

T data : Data to be appended at the end of the file.

Used in

example sketch
SD_write

Description
This is the basic write function used to store readings to the SD-

card.

printFileSystem

Function void printFileSystem()

Return Type void

Parameters None

Function void printFileSystem()

Used in

example

sketch

SD_advanced

Description
This is a small helper function to print names of files and folders

present on the SD-card. Can be used in development.

newDir

Function void newDir(String path)

Return Type void

Parameters

String path : Path of the new directory. If it already exists,

nothing is done.

Used in example

sketch
SD_advanced

Description Used to create new directories on the SD-card.

deleteDir

Function void deleteDir(String path)

Return Type void

Parameters

String path : Path of the directory to be deleted.

Used in example sketch SD_advanced

Description Used to delete directories on the SD-card.

fileExists

Function bool fileExists(String path)

Return Type bool

Return Value Returns true if the file exists.

Parameters

String path : Path to the file.

Used in example

sketch
SD_advanced

Function bool fileExists(String path)

Description
This function can be used to check if a file exists on the SD-

card.

fileSize

Function uint32_t fileSize(String path)

Return Type uint32_t

Return Value Size of the file in bytes.

Parameters

String path : Path to the file.

Used in example

sketch
SD_advanced

Description
This function can be used to read the size of a file on the

SD-card.

writeFile

Function uint8_t writeFile(String filename, T data)

Return

Type
uint8_t

Return

Value
Returns 0 if write was successful.

Parameters

String filename : Address of the file to be written.

T data : Data to be written to the file.

Used in

example

sketch

SD_advanced

Description

This function is similar to the appendFile() , but it overwrites

existing data on the SD-card. For data storage, appendFile should

be used instead. This function can be useful for storing settings, for

example.

readFile

Function String readFile(String path)

Return

Type
String

Return

Value
All content in the file.

Parameters

String path : Path to the file.

Used in

example

sketch

SD_advanced

Description

This function can be used to read all data from a file into a variable.

Attempting to read large files can cause problems, but it is fine for

small files, such as configuration or setting files.

renameFile

Function void renameFile(String oldpath, String newpath)

Return Type void

Function void renameFile(String oldpath, String newpath)

Parameters

String oldpath : Original path to the file.

String newpath : New path of the file.

Used in example

sketch
SD_advanced

Description
This function can be used to rename or move files on the

SD-card.

deleteFile

Function void deleteFile(String path)

Return Type void

Parameters

String path : Path of the file to be deleted.

Used in example

sketch
SD_advanced

Description
This function can be used to delete files from the SD-

card.

Radio Functions

onDataReceived

Function void onDataReceived(String data)

Return

Type
void

Parameters

String data : Received data as an Arduino String.

Used in

example

sketch

Groundstation_receive

Description

This is a callback function that is called when data is received. The

user code should define this function, and the CanSat NeXT will call

it automatically when data is received.

onBinaryDataReceived

Function void onBinaryDataReceived(const uint8_t *data, int len)

Return

Type
void

Function void onBinaryDataReceived(const uint8_t *data, int len)

Parameters

const uint8_t *data : Received data as a uint8_t array.

int len : Length of received data in bytes.

Used in

example

sketch

None

Description

This is similar to the onDataReceived function, but the data is

provided as binary instead of a String object. This is provided for

advanced users who find the String object limiting.

onDataSent

Function void onDataSent(const bool success)

Return

Type
void

Parameters

const bool success : Boolean indicating if data was sent

successfully.

Used in None

Function void onDataSent(const bool success)

example

sketch

Description

This is another callback function that can be added to the user code

if required. It can be used to check if the reception was

acknowledged by another radio.

sendData (String variant)

Function uint8_t sendData(T data)

Return

Type
uint8_t

Return

Value
0 if data was sent (does not indicate acknowledgment).

Parameters

T data : Data to be sent. Any type of data can be used, but is

converted to a string internally.

Used in

example

sketch

Send_data

Description

This is the main function for sending data between the ground

station and the satellite. Note that the return value does not indicate

if data was actually received, just that it was sent. The callback

Function uint8_t sendData(T data)

onDataSent can be used to check if the data was received by the

other end.

sendData (Binary variant)

Function uint8_t sendData(char *data, uint16_t len)

Return Type uint8_t

Return Value 0 if data was sent (does not indicate acknowledgment).

Parameters

char *data : Data to be sent as a char array.

uint16_t len : Length of the data in bytes.

Used in

example

sketch

None

Description
A binary variant of the sendData function, provided for advanced

users who feel limited by the String object.

ADC Functions

adcToVoltage

Function float adcToVoltage(int value)

Return

Type
float

Return

Value
Converted voltage as volts.

Parameters

int value : ADC reading to be converted to voltage.

Used in

example

sketch

AccurateAnalogRead

Description

This function converts an ADC reading to voltage using a calibrated

third-order polynomial for more linear conversion. Note that this

function calculates the voltage at the input pin, so to calculate the

battery voltage, you need to also consider the resistor network.

analogReadVoltage

Function float analogReadVoltage(int pin)

Return float

Function float analogReadVoltage(int pin)

Type

Return

Value
ADC voltage as volts.

Parameters

int pin : Pin to be read.

Used in

example

sketch

AccurateAnalogRead

Description
This function reads voltage directly instead of using analogRead

and converts the reading to voltage internally using adcToVoltage .

Extension interface
Custom devices can be built and used together with CanSat. These can be used to make

interesting projects, which you can find ideas for from our Blog.

CanSat's extension interface features a free UART line, two ADC pins, and 5 free digital

I/O pins. Additionally, SPI and I2C lines are available for the extension interface,

although they are shared with SD card and the sensor suite, respectively.

The user can also choose to use the UART2 and ADC pins as digital I/O, in case serial

communication or analog to digital conversion is not needed in their solution.

Pin number Pin name Use as Notes

12 GPIO12 Digital I/O Free

15 GPIO15 Digital I/O Free

16 GPIO16 UART2 RX Free

17 GPIO17 UART2 TX Free

18 SPI_CLK SPI CLK Co-use with SD card

19 SPI_MISO SPI MISO Co-use with SD card

21 I2C_SDA I2C SDA Co-use with sensor suite

22 I2C_SCL I2C SCL Co-use with sensor suite

https://www.cansat.fi/blog

Pin number Pin name Use as Notes

23 SPI_MOSI SPI MOSI Co-use with SD card

25 GPIO25 Digital I/O Free

26 GPIO26 Digital I/O Free

27 GPIO27 Digital I/O Free

32 GPIO32 ADC Free

33 GPIO33 ADC Free

Table: Extension interface pin lookup table. Pin name refers to library pin name.

Communication options
The CanSat library does not include communication wrappers for the custom devices.

For UART, I2C and SPI communication between CanSat NeXT and your custom payload

device, refer to Arduino's default UART, Wire, and SPI libraries, respectively.

UART
The UART2 line is a good alternative as it serves as an unallocated communication

interface for extended payloads.

For sending data through the UART line, please refer to the Arduino

https://docs.arduino.cc/learn/communication/uart/
https://docs.arduino.cc/learn/communication/wire/
https://docs.arduino.cc/learn/communication/spi/

Image: UART protocol in ASCII

I2C
Use of I2C is supported, but the user must bear in mind that another subsystem exists

on the line.

With multiple I2C slaves, the user code needs to specify which I2C slave the CanSat is

using at a given time. This is distinguished with a slave address, which is unique

hexadecimal code to each device and can be found from the subsystem device's data

sheet.

SPI
Use of SPI is supported as well, but the user must bear in mind that another subsystem

exists on the line.

With SPI, the slave distinction is instead made by specifying a chip select pin. The user

must dedicate one of the free GPIO pins to be a chip select for their custom extended

payload device. The SD Card's chip select pin is defined in the CanSatPins.h library file

CanSat NeXT

ESP32 User's device

+----------------+ +----------------+

| | TX (Transmit) | |

| TX o----|---------------->| RX (Receive) |

| | | |

| RX o<---|<----------------| TX |

| | GND (Ground) | |

| GND o---|-----------------| GND |

+----------------+ +----------------+

as SD_CS .

Image: the CanSat NeXT I2C bus featuring several secondary, or "slave" subsystems. In this

context, the Sensor suite is one of the slave subsystems.

Image: the CanSat NeXT SPI bus configuration when two secondary, or "slave" subsystems

are present. In this context, the SD card is one of the slave subsystems.

CanSat NeXT Hardware
These pages have articles about various hardware aspects of CanSat NeXT, such as

articles about the extension header pinout or the power system. The articles currently

have quite basic information, but they actively being expanded. If there is some more

information you need, don't hesitate to contact samuli@kitsat.fi with your questions

and wishes about what to include here next.

If you are new to CanSat NeXT, check out our lessons about using CanSat NeXT. Or, if

you are looking for information about the library, take a look at the software

specification.

mailto:samuli@kitsat.fi

On-Board Sensors
This article introduces the sensors integrated to the CanSat NeXT main board. The use

of the sensors is covered in the software documentation, whereas this article provides

more information about the sensors themselves.

There are three on-board sensors on the CanSat NeXT main board. These are the IMU

LSM6DS3, pressure sensor LPS22HB and the LDR. Additionally, the board has a through-

hole slot for adding an external thermistor. As the LPS22HB already has both pressure

and temperature measuring capabilities, it theoretically suffices to fulfill the primary

mission criteria of the CanSat competitions on its own. However, as it is measuring the

internal junction temperature, or basically the temperature of the PCB on that spot, it is

not a good atmospheric temperature measurement in most configurations. Additionally,

the absolute measurement of the pressure sensor can be supported by the additional

data from the IMU accelerometer. The LDR has been added first and foremost to help

students learn the concepts regarding analog sensors as the response to stimuli is

almost instant, whereas a thermistor takes time to heat up and cool down. That being

said, it can also support the creative missions the student will come up with, just like the

IMUs accelerometer and gyroscope. Furthermore, in addition to the on-board sensor,

the CanSat NeXT encourages the use of additional sensors through the extension

interface.

Inertial Measurement Unit
The IMU, LSM6DS3 by STMicroelectronics is an SiP (system-in-package) style MEMS

sensor device, integrating an accelerometer, gyroscope and the readout electronics into

a small package. The sensor supports SPI and I2C serial interfaces, and also includes an

internal temperature sensor.

The LSM6DS3 has switchable acceleration measurement ranges of ±2/±4/±8/±16 G and

angular rate measurement ranges of ±125/±250/±500/±1000/±2000 deg/s. The use of a

higher range also decreases the resolution of the device.

In CanSat NeXT, the LSM6DS3 is used in I2C mode. The I2C address is 1101010b (0x6A),

but the next version will add support for modifying the hardware to change the address

to 1101011b (0x6B) if an advanced user has a need for using the original address for

something else.

The measurement ranges will be set to maximum by default in the library in order to

capture most data from the violent rocket launch. The data ranges are also modifiable

by the user.

Barometer
The pressure sensor LPS22HB by STMicroelectronics is another SiP MEMS device,

designed for measurement of pressure from 260-1260 hPa. The range it reports data in

is significantly larger, but the accuracy of measurements outside that range is

questionable. The MEMS pressure sensors work by measuring piezoresistive changes in

the sensor diaphragm. As temperature affects the resistance of the piezo element as

well, it needs to be compensated. To enable this, the chip also has a relatively accurate

junction-temperature sensor as well right next to the piezoresistive element. This

temperature measurement can also be read from the sensor, but it has to be kept in

mind that it is a measurement of the internal chip temperature, not of the surrounding

air.

Similar to the IMU, the LPS22HB can also be communicated with using either SPI or I2C

interface. In CanSat NeXT, it is connected to the same I2C interface as the IMU. The I2C

address of the LPS22HB is 1011100b (0x5C), but we will add support to change it to

0x5D if desired.

Analog to Digital Converter
This refers to the voltage measurement using the analogRead() command.

The 12 bit analog-to-digital converter (ADC) in ESP32 is notoriously nonlinear. This

doesn’t matter for most applications, such as using it to detect temperature changes or

changes in LDR resistance, however making absolute measurements of battery voltage

or NTC resistance can be a bit tricky. One way around this is careful calibration, which

would make for sufficiently accurate data for the temperature for example. However,

the CanSat library also provides a calibrated correction function. The function

implements a third order polynomial correction for the ADC, correlating the ADC

reading with the actual voltage present on the ADC pin. The correction function is

V = −1.907217e × 10−11 × a3 + 8.368612 × 10−8 × a2 + 7.081732e × 10−4 ×
a + 0.1572375

Where V is the measured voltage and a is the 12-bit ADC reading from analogRead().

The function is included in the library, and is called adcToVoltage. Using this formula

makes the ADC reading error less than 1% inside a voltage range 0.1 V - 3.2 V.

Light Dependant Resistor
The CanSat NeXT main board incorporates an LDR to the sensor set as well. The LDR is a

special kind of resistor, in that the resistance varies with illumination. The exact

characteristics may vary, but with the LDR we are currently using, the resistance is 5-10

kΩ at 10 lux, and 300 kΩ in the dark.

The way this is used in CanSat NeXT, is that a voltage of 3.3 V is applied to a comparison

resistor from the MCU. This causes the voltage at LDR_OUT to be

VLDR = VEN R401+R402
R402 .

And as the R402 resistance changes, the voltage at the LDR_OUT will change as well.

This voltage can be read with the ESP32 ADC, and then correlated to the resistance of

the LDR. In practice however, usually with LDRs we are interested in the change rather

than the absolute value. For example, it usually suffices to detect a large change in the

voltage when the device is exposed to light after being deployed from the rocket, for

example. The threshold values are usually set experimentally, rather than calculated

analytically. Note that in CanSat NeXT, you need to enable the analog on-board sensors

by writing MEAS_EN pin HIGH. This is shown in the example codes.

Thermistor
The circuit used to read the external thermistor is very similar to the LDR readout

circuit. The exact same logic applies, that when a voltage is applied to the comparison

resistor, the voltage at TEMP_OUT changes according to

VTEMP = VEN T H501+R501
T H501 .

In this case however, we are usually interested in the absolute value of the thermistor

resistance. Therefore the VoltageConversion is useful, as it linearizes the ADC readings

and also calculates the V_temp directly. This way, the user can calculate the resistance

of the thermistor in the code. The value should still be correlated with temperature

using measurements, although the thermistor datasheet might also include some clues

as to how to calculate the temperature from the resistance. Note that if doing

everything analytically, you should also take into account the resistance variance of

R501. This is done most easily by measuring the resistance with a multimeter, instead of

assuming it is 10 000 ohms.

The comparison resistor on the PCB is relatively stable over a temperature range,

however it also changes slightly. If very accurate temperature readings are desired, this

should be compensated for. The junction temperature measurement from the pressure

sensor can be used for this. That being said, it is definitely not required for CanSat

competitions. For those interested, the thermal coefficient of the R501 is reported by

the manufacturer to be 100 PPM/°C.

While the barometer temperature mostly reflects the temperature of the board itself,

the thermistor can be mounted such that it reacts to temperature changes outside the

board, even outside the can. You can also add wires to get it even further away. If it will

be used, the thermistor can be soldered to the appropriate location on the CanSat NeXT

board. The polarization doesn't matter, i.e. it can be mounted either way.

Electrical Power
Management
This article explains how to power on the CanSat NeXT board, how to safely connect

external devices to the board, and finally how the power system works.

Getting Started
For most users, it is often enough to simply add two AAA-batteries to the on-board

battery holder and secure them in place. When the USB is connected, CanSat NeXT

automatically switches to use the USB power instead of the batteries, so that the

battery life is extended. Remember to switch to fresh batteries before a flight.

CanSat NeXT Power System
There are three ways to power the CanSat NeXT. The default way is to power it with

USB, so that when the user is developing the software, the PC powers the device and no

external power is required. Second way is to use the on-board batteries (OBB). This is

done by inserting two standard 1.5 V AAA batteries into the battery connector on the

bottom side of the main board. The USB is still the default way even if batteries are

inserted, i.e. the battery capacity is not used when USB is plugged in.

These are the usual options, and should cover most use cases. Additionally, however,

there are two “advanced” options for powering CanSat NeXT if needed for a special

purpose. First, the board has empty through-hole headers labeled EXT, that can be used

for connecting an external battery. The battery voltage can be 3.2-6V. The EXT line is

automatically disconnected when USB is not present to extend battery life and to

protect the battery. There is a safety feature that the OBB is disabled if a battery is

connected, but the OBB should still not be present when external batteries are used.

There is also one last option that gives all responsibility to the user, and that is inputting

3V3 to the device through the extension interface. This is not a safe way to power the

device, but advanced users who know what they are doing might find this the easiest

way to achieve the desired functionalities.

In summary, there are three safe ways to power CanSat NeXT:

1. Using USB - main method used for development

2. Using on-board batteries - recommended method for flight

3. Using an external battery - For advanced users

Using regular AAA batteries, a battery life of 4 hours was reached in room temperature,

and 50 minutes in -40 degrees celsius. During the test, the device read all the sensors

and transmitted their data 10 times per second. It should be noted that regular alkaline

batteries are not designed to work in such low temperatures, and they usually start

leaking potassium after this kind of torture tests. This is not dangerous, but the alkaline

batteries should be always disposed of safely afterwards, especially if they were used in

an uncommon environment such as extreme cold, or having been dropped from a

rocket. Or both.

When using USB, the current draw from the extension pins should not exceed 300 mA.

The OBB are slightly more forgiving, giving at most 800 mA from the extension pins. If

more power is required, an external battery should be considered. This is most likely not

the case unless you are running motors (small servos are fine) or heaters, for example.

Small cameras etc. are still fine.

Extra - how the adaptive multi-source
power scheme works
To achieve the desired functionalities safely, we need to consider quite many things in

the power system design. First, to safely be able to connect USB, EXT and OBB at the

same time, the power system needs to switch on and off the various power sources. This

is further complicated by the fact that it can’t be done in software, as the user needs to

be able to have any software they desire without endangering safe operations.

Furthermore, the OBB has a quite different voltage range to the USB and external

battery. This necessitates the OBB to use a boost regulator, while the USB and EXT need

either a buck regulator or an LDO. For simplicity and reliability, an LDO is used in that

line. Finally, one power switch should be able to disconnect all of the power sources.

Below is the schematic for the boost converter. The IC is BU33UV7NUX, a boost

converter specifically designed to give +3.3V from two alkaline batteries. It is enabled

when the BOOST_EN line is high, or above 0.6 V.

All OBB, USB and EXT lines are protected with a fuse, over-current protection, reverse-

voltage and current protection and over temperature protection. Furthermore, the OBB

is protected with under voltage lock out and short circuit protection, as those situations

should be avoided with alkaline batteries.

Note in the following section, that external battery voltage is V_EXT, USB voltage is

VBUS and OBB voltage is BATT.

The BOOST_EN line is controlled by a switch circuit, which either takes the input from

EN_MASTER (EN_M) line, or ignores that if V_EXT or VBUS is present. This is made to

ensure that the boost is always off when VBUS and V_EXT is present, and it is only

enabled if both VBUS and V_EXT are at 0V and the EN_M is high.

Or as a truth table:

V_EXT VBUS EN_M BOOST_EN

1 1 1 0

1 1 0 0

0 0 0 0

0 0 1 1

So BOOST_EN = EN_M ∧ !(V_EXT ∨ V_BUS).

Next, we need to disconnect V_EXT if VBUS is present to prevent undesired discharge or

accidental charging. This is done using a power switch IC with help of a transistor circuit

which takes the enable-line of the power switch down if VBUS is present. This

disconnects the battery. The USB line is always used when present, so it is routed to the

LDO with a simple schottky diode.

Overall, this circuit leads to a functionality where USB power is used if present, and

V_EXT used when USB is not present. Finally, the EN_M is used to enable or disable the

LDO.

The EN_M is controlled by the user through a power switch. The switch connects EN_M

to either USB or EXT, or the battery voltage when only OBB is used. When the switch is

turned off, it connects EN_M to ground, turning off both the LDO and the boost

regulator.

So in practice, the power switch turns the device on/off, USB is used if present, and

V_EXT is preferred over OBB. Finally, there is one more detail to consider. What voltage

should ESP32 measure as the battery voltage?

This was solved in a simple way. The voltage connected to the ESP32 ADC is always the

OBB, but the user can select V_EXT instead by cutting the jumper with a scalpel and

soldering the jumper JP801 to short 2-3 instead. This selects V_EXT to the BATT_MEAS

instead.

The jumper can be found from the bottom side of the CanSat NeXT main board. The

jumper is quite easy to solder, so don’t be afraid to cut the 1-2 line if you are using an

external battery. It can always be resoldered to again use 1-2 instead.

Communication and
Antennas
This article introduces the key concepts needed for wireless data transmission with

CanSat NeXT. First, the communication system is discussed on a general level, next some

different options are presented for antenna selection when using CanSat NeXT. Finally,

the last part of article presents a simple tutorial for building a quarter-wave monopole

antenna from the parts included in the kit.

Getting Started
CanSat NeXT is almost ready to start wireless communication straight out of the box.

Only thing that is needed is the proper software, and an antenna for both the

transmitter and the receiver. For the first one, refer to the software materials on this

page. For the latter one, this page includes instructions on how to select an external

antenna, and to how construct a simple monopole antenna from the materials included

with the CanSat NeXT.

While the board is quite resilient to such things thanks to software checks, you should

never attempt to transmit anything from a radio without an antenna. Although unlikely

due to the low powers involved with this system, the reflected radiowave can cause real

harm to the electronics.

CanSat NeXT Communication System
CanSat NeXT handles the wireless data transfer a bit differently to the older CanSat kits.

Instead of a separate radio module, CanSat NeXT uses the MCU’s integrated WiFi-radio

for the communication. The WiFi-radio is normally used to transfer data between an

ESP32 and the internet, enable the use of ESP32 as a simple server, or even connect

ESP32 to a bluetooth device, but with certain clever TCP-IP configuration tricks, we can

enable direct peer-to-peer communication between ESP32 devices. The system is called

ESP-NOW, and it is developed and maintained by EspressIf, who are the developers of

ESP32 hardware. Furthermore, there are special low-rate communication schemes,

which by increasing the energy-per-bit of the transmission, significantly increase the

possible range of the wifi-radio over the usual few tens of meters.

The data rate of ESP-NOW is significantly faster than what would be possible with the

old radio. Even with simply decreasing the time between packets in the example code,

CanSat NeXT is able to transmit ~20 full packets to the GS in a second. Theoretically the

data rate can be up to 250 kbit/s in the long range mode, but this can be hard to achieve

in the software. That being said, transmission of for example full pictures from a camera

during the flight should be entirely feasible with correct software.

Even with simple quarter-wavelength monopole antennas (a 31 mm piece of wire) at

both ends, CanSat NeXT was able to send data to the ground station from 1.3 km away,

at which point the line of sight was lost. When testing with a drone, the range was

limited to roughly 1 km. It is possible that the drone interfered with the radio enough to

somewhat limit the range. However, with a better antenna, the range could be increased

even more. A small yagi antenna would have theoretically increased the operational

range 10-fold.

There are a couple practical details that differ from the older radio communication

system. First, the “pairing” of satellites to ground station receivers happens with Media

Access Control (MAC) addresses, which are set in the code. The WiFi system is clever

enough to handle the timing, collision and frequency issues behind the scenes. The user

simply needs to ensure that the GS is listening to the MAC address the satellite is

transmitting with. Secondly, the frequency of the radio is different. The WiFi radio

operates at 2.4 GHz band (center frequency is 2.445 GHz), which means that both the

propagation characteristics and requirements for antenna design are different than

before. The signal is somewhat more sensitive to rain, and line-of-sight issues, and might

not be able to transmit in some cases where the old system would have worked.

The wavelength of the radio signal is also different. Since

λ =
f
c ≈ 2.445∗109Hz

3∗108 m/s = 0.12261 m,

a quarter wavelength monopole antenna should have a length of 0.03065 m or 30.65

mm. This length is also marked on the CanSat NeXT PCB to make cutting of the cable a

bit easier. The antenna should be cut precisely, but within ~0.5 mm is still fine.

A quarter wavelength antenna has sufficient RF performance for the CanSat

competitions. That being said, it might be of interest to some users to get even better

range. One possible place of improvement is in the length of the monopole antenna. In

practice the quarter-wavelength resonance might not be exactly at the right frequency,

since other parameters such as environment, surrounding metal elements or the portion

of the wire still covered with grounded metal might affect the resonance a bit. The

antenna could be tuned with the use of a vector network analyzer (VNA). I think I should

do this at some point, and correct the materials accordingly.

A more robust solution would be to use a different style of antenna. At 2.4 GHz, there

are loads of fun antenna ideas on the internet. These include a helix antenna, yagi

antenna, pringles antenna, and many others. Many of these, if well constructed, will

outperform the simple monopole easily. Even just a dipole would be an improvement

over a simple wire.

The connector used on most ESP32 modules is a Hirose U.FL connector. This is a good

quality miniature RF connector, which provides good RF performance for weak signals.

One problem with this connector however is that the cable is quite thin making it a bit

impractical in some cases. It also leads to larger-than-desired RF losses if the cable is

long, as it might be when using an external antenna. In these cases, a U.FL to SMA

adapter cable could be used. I’ll look to see if we could provide these in our webshop.

This would enable teams to use a more familiar SMA connector. That being said, it is

completely possible to build good antennas with just using U.FL.

Unlike SMA however, U.FL relies mechanically on snap-on retaining features to hold the

connector in place. This is usually sufficient, however for extra safety it is a good idea to

add a zip tie for extra security. The CanSat NeXT PCB has slots next to the antenna

connector to accommodate a small zip tie. Ideally, a 3d-printed or otherwise constructed

support sleeve would be added for the cable before the zip tie. A file for the 3d-printed

support is available from the GitHub page.

Antenna Options
An antenna is essentially a device that transforms unguided electromagnetic waves into

guided ones, and vice versa. Due to the simple nature of the device, there are a

multitude of options from which to select the antenna for your device. From a practical

point of view, the antenna selection has a lot of freedom, and quite many things to

consider. You need to consider at least

1. Operating frequency of the antenna (should include 2.45 GHz)

2. Bandwidth of the antenna (At very least 35 MHz)

3. Impedance of the antenna (50 ohms)

4. Connector (U.FL or you can use adapters)

5. Physical size (Does it fit to the can)

6. Cost

7. Manufacturing methods, if you are making the antenna yourself.

8. Polarization of the antenna.

Antenna selection can seem overwhelming, and it often is, however in this case it is

made much easier by the fact that we are in fact using a Wi-Fi-radio - we can actually use

almost any 2.4 GHz Wi-Fi antenna with the system. Most of them however are too large,

and also they tend to use connectors called RP-SMA, rather than U.FL. However, with a

suitable adapter they can be good choices to use with the groundstation. There are even

directive antennas available, meaning that you can get extra gain to improve the radio

link.

Wi-Fi antennas are a solid choice, however they have one significant drawback -

polarization. They are almost always linearly polarized, which means that the signal

strength varies significantly depending on the orientation of the transmitter and the

receiver. In worst cases, the antennas being perpendicular to each other might even see

the signal fade out completely. Therefore, an alternative option is to use drone

antennas, which tend to be circularly polarized. In practice this means that we have

some constant polarization losses, but they are less dramatic. An alternative clever

solution to get around the polarization problem is to use two receivers, with antennas

mounted perpendicular to each other. This way at least one of them will always have a

suitable orientation for receiving the signal.

Of course, a true maker will always want to make their own antenna. Some interesting

constructions that are suitable for DIY-manufacturing include a helix-antenna, "pringles"

antenna, yagi, dipole, or a monopole antenna. There are a lot of instructions online for

building most of these. The last part of this article shows how to make your own

monopole antenna, suitable for CanSat competitions, from the materials shipped with

CanSat NeXT.

Building a quarter-wave monopole
antenna
This section of article describes how to build a resonably effective quarter-wave

monopole antenna from the materials included in the kit. The antenna is called that

since it only has one pole (compare to a dipole), and its length is quarter of the

wavelength that we are transmitting.

In addition to the coaxial cable and piece of heat shrink tubing, you'll need some type of

wire strippers and wire cutters. Almost any type will work. Additionally you will need a

heat source for the heat shrink, such as a hot air gun, soldering iron or even a lighter.

First, begin by cutting the cable roughly in half.

Next, we will build the actual antenna. This part should be done as precisely as you can.

Within 0.2 mm or so will work fine, but try to get it as close to the correct length as

possible, as that will help with the performance.

A coaxial cable consists of four parts - a center conductor, dielectric, shield, and an outer

jacket. Usually, these cables are used to transmit radio frequency signals between

devices, so that the currents on the center conductor are balanced by those in the

shield. However, by removing the shield conductor, the currents on the inner conductor

will create an antenna. The length of this exposed area will determine the wavelenght or

operating frequency of the antenna, and we now want it to match our operating

frequency of 2.445 GHz, so we need remove the shield from length of 30.65 mm.

Carefully strip the outer jacket from the cable. Ideally, try to remove only the jacket and

the shield from the desired length. However, cutting the insulator is not a catastrophe. It

is usually easier to remove the outer jacket in parts, rather than all at once. Furthermore,

it might be easier to first remove too much, and then cut the inner conductor to the

right length, rather than try to get it exactly right on the first try.

The image below shows the stripped cables. Try to make it like the upper one, but the

lower one will work as well - it just might be more sensitive to moisture. If there are

dangling pieces of the shield left, carefully cut them off. Make sure that there are no

possibility that the inner conductor and the shield are touching each other - even a

single strand would render the antenna unusable.

The antenna is now totally functional at this point, however it may be sensitive to

moisture. Therefore, we want to now add a new jacket to this, which is what the heat

shrink tubing is for. Cut two pieces, slightly longer than the antenna you have made, and

place it over the antenna and use a heat source to shrink it in place. Be careful not to

burn the heat shrink tubing, especially if using something else than a hot air gun.

After this, the antennas are ready. On the groundstation side, the antenna is probably

fine like this. On the other hand, while the connector is fairly secure, it is a good idea to

support the connector somehow on the CanSat side. A very robust way is to use a 3d-

printed support and some ziptie, however many other methods will work as well.

Remember to also consider how the antenna will be placed inside the can. Ideally, it

should be in a location where the transmission is not blocked by any metal parts.

Finally, here is a step-file of the support shown in the image. You can import this into

most CAD software, and modify it, or print it with a 3d-printer.

Download step-file

https://www.cansat.fi/assets/files/uFl-support-73b381975835167cc21c9b4e986abc30.step

Pinouts
This article shows the pin names used by the processor in CanSat NeXT, as well as shows

what pins you can use to extend your project.

Pinout
The picture below shows the pins for using the extension header for adding external

electronics to the board.

Here is the full list of pins used by CanSat NeXT board. The internal use refers to the pin

being used for the on-board resources, and extension refers to the pins having been

routed to the extension interface. Some pins, those for I2C and SPI, are used both

internally and externally. The library name refers to a macro name, which can be used

instead of the pin number when CanSatNeXT library has been included.

Pin

Number
Library name Note

Internal/

External

0 BOOT
Used

internally

1 USB_UART_TX Used for USB
Used

internally

3 USB_UART_RX Used for USB
Used

internally

4 SD_CS SD card chip select
Used

internally

5 LED Can be used to blink on-board LED
Used

internally

12 GPIO12
Extension

interface

13 MEAS_EN
Drive high to enable LDR and

thermistor

Used

internally

14 GPIO14
Can be used to read if SD-card is in

place

Used

internally

15 GPIO15
Extension

interface

16 GPIO16 UART2 RX
Extension

interface

Pin

Number
Library name Note

Internal/

External

17 GPIO17 UART2 TX
Extension

interface

18 SPI_CLK
Used by the SD-card, also available

externally
Both

19 SPI_MISO
Used by the SD-card, also available

externally
Both

21 I2C_SDA
Used by the on-board sensors, also

available externally
Both

22 I2C_SCL
Used by the on-board sensors, also

available externally
Both

23 SPI_MOSI
Used by the SD-card, also available

externally
Both

25 GPIO25
Extension

interface

26 GPIO26
Extension

interface

27 GPIO27
Extension

interface

32 GPIO32 ADC
Extension

interface

Pin

Number
Library name Note

Internal/

External

33 GPIO33 ADC
Extension

interface

34 LDR ADC for the on-board LDR
Used

internally

35 NTC ADC for the thermistor
Used

internally

36 VDD ADC used to monitor supply voltage
Used

internally

39 BATT ADC used to monitor battery voltage
Used

internally

Mechanical Design

PCB Dimensions

The CanSat NeXT main board is built on a 70 x 50 x 1.6 mm PCB, with electronics on the

top side and battery on the bottom side. The PCB has mounting points on each corner, 4

mm from the sides. The mounting points have a diameter of 3.2 mm with a grounded

pad area of 6.4 mm, and they are intended for M3 screws or standoffs. The pad area is

also large enough to fit a M3 nut. Additionally, the board has two trapezoidal 8 x 1.5 mm

cutouts on the sides and a component-free area on the top side in the center, so that a

zip tie or other extra support can be added for the batteries for flight operations.

Similarly, two 8 x 1.3 mm slots can be found next to the MCU antenna connector so that

the antenna can be secured to the board with a small zip tie or piece of string. The USB

connector is slightly intruded to the board to prevent any extrusions. A small cutout is

added to accommodate certain USB cables despite the intrusion. The extension headers

are standard 0.1 inch (2.54 mm) female headers, and they are placed so that the center

of the mounting hole is 2 mm from the long edge of the board. The header closest to

the short edge is 10 mm away from it. The thickness of the PCB is 1.6 mm, and the

height of the batteries from the board is roughly 13.5 mm. The headers are roughly 7.2

mm tall. This makes the height of the enclosing volume roughly 22.3 mm. Furthermore,

if standoffs are used to stack compatible boards together, the standoffs, spacers or

other mechanical mounting system should separate the boards at least 7.5 mm. When

using standard pin headers, the recommended board separation is 12 mm.

Below, you can download a .step file of the perf-board, which can be used to add the

PCB into a CAD-design for reference, or even as a starting point for a modified board.

Download step-file

Designing a Custom PCB
If you want to take your electronics design to the next level, you should consider making

a custom PCB for the electronics. KiCAD is a great, free software that can be used to

design PCBs, and getting them manufactured is surprisingly affordable.

https://www.cansat.fi/assets/files/cansat-97dd24a7e809746772f94e56cb13d5b6.step

Here are resources on getting started with KiCAD:

https://docs.kicad.org/#_getting_started

Here is a KiCAD template for starting your own CanSat compatible circuit board:

Download KiCAD template

https://docs.kicad.org/#_getting_started
https://www.cansat.fi/assets/files/Breakout-template-2692bd7db3cdeea9389d0671e9c6cccf.zip

	Welcome to Documentation
	License
	Contribution
	Getting Started with CanSat NeXT
	Welcome to CanSat NeXT!
	Your Kit
	Lessons

	Lesson 1: Hello World!
	Installing the tooling
	Install Arduino IDE
	Add ESP32 support
	Install Cansat NeXT library

	Connecting to PC
	Running your first program
	Selecting the correct port
	Choosing an example
	Hello World explained

	Lesson 2: Feeling the Pressure
	Using the data

	Lesson 3: Sensing the Spin
	Library Example
	Free Fall detection

	Lesson 4: Resistance isn't Futile
	Physics of Resistive Sensors
	Reading the LDR in Practice

	Lesson 5: Saving Bits & Bytes
	SD card in CanSat NeXT library
	Reading Data

	Lesson 6: Phoning Home
	Antennas
	Sending Data
	Receiving Data
	Real time Zero-G

	CanSat NeXT Software
	Getting started
	Install Arduino IDE
	Add ESP32 support
	Install Cansat NeXT library

	Manual installation

	Connecting to PC
	You are ready to go!
	Library specification
	Functions
	System Initialization Functions
	CanSatInit
	CanSatInit (simplified MAC-address specification)
	GroundStationInit
	GroundStationInit (simplified MAC-address specification)

	IMU Functions
	readAcceleration
	readAccelX
	readAccelY
	readAccelZ
	readGyro
	readGyroX
	readGyroY
	readGyroZ

	Barometer Functions
	readPressure
	readTemperature

	SD Card / File System Functions
	SDCardPresent
	appendFile
	printFileSystem
	newDir
	deleteDir
	fileExists
	fileSize
	writeFile
	readFile
	renameFile
	deleteFile

	Radio Functions
	onDataReceived
	onBinaryDataReceived
	onDataSent
	sendData (String variant)
	sendData (Binary variant)

	ADC Functions
	adcToVoltage
	analogReadVoltage

	Extension interface
	Communication options
	UART
	I2C
	SPI

	CanSat NeXT Hardware
	On-Board Sensors
	Inertial Measurement Unit
	Barometer
	Analog to Digital Converter
	Light Dependant Resistor
	Thermistor

	Electrical Power Management
	Getting Started
	CanSat NeXT Power System
	Extra - how the adaptive multi-source power scheme works

	Communication and Antennas
	Getting Started
	CanSat NeXT Communication System
	Antenna Options
	Building a quarter-wave monopole antenna

	Pinouts
	Pinout
	Mechanical Design
	PCB Dimensions
	Designing a Custom PCB

